
 1

Master’s Project 2015

SIV-12-15

Idachaba Emmanuel (142938)

Egbunu Achema (142773)

Home Automation with Windows 10 IoT

 2

Figure 1-1: Overview of the Home Automation system

Telemark University College

Faculty of Technology

Kjølnes ring 56

3918 Porsgrunn

Version 0.9

http://www.hit.no

Egbunu Achema & Idachaba Emmanuel

http://www.hit.no/

 3

Telemark University College
Faculty of Technology

M.Sc. Programme

PROJECT REPORT, COURSE CODE SCE4006

Students: Egbunu Achema (142773) & Idachaba Emmanuel (142938)

Project title: Home Automation Monitoring and with Windows 10 IoT

Signatures: …………………………………….

Number of pages: 102

Supervisor: Hans-Petter Halvorsen sign.: .

2
nd

 Supervisor: Nils-Olav Skeie sign.: .

Censor: <name> sign.: .

External partner: <name> sign.: .

Availability: <Open/Secret>

Archive approval (supervisor signature): sign.: . Date :

Abstract:

Telemark University College accepts no responsibility for results and conclusions presented in this report.

The home automation has becomes so vital due to the comfort and flexibility user derives from it. The

design and implementation of this project is based on the use of Arduino and Raspberry Pi for reading

temperature and humidity values, logging locally and remote data database, and the overall system

management over internet.

They Arduino and Raspberry devices are located at different point interfacing with the sensors and

collecting the sensor data. The sensor data collected is wirelessly transferred to data aggregator system

which is an Arduino UNO device through XBee and Bluetooth wireless communication.

The data aggregator is directly connected to Wi-Fi (Router) where the sensor data is logged to the local

database (SD Card) and remote database. The user can access these data from anywhere using smart

phones, iPad or computer.

The overall management of the Home Automation system is carried out either remotely or locally using

Tablet or Mini PC. For the remote management, the user can monitor the data logged to the data over the

internet using Tablet or any other devices. The project focus on developing a reliable, effective and robust

system of using Arduino and Raspberry Pi that will enables the user to monitor temperature and humidity

data logged to the local database and remote database from anywhere.

 4

Contents
Master’s Project 2015 ..1

SIV-12-15 ..1

Home Automation with Windows 10 IoT ... 1

1 Introduction .. 8

1.1 Home Automation ...8

1.1.1 Existing Home Automation ..8

1.1.2 Smart Home...12

1.1.3 Why Home Automation? ..13

1.2 Hardware ...14

1.2.1 Arduino UNO Device ..14

1.2.2 Raspberry Pi 2 Device ..16

1.2.3 Why both Arduino and Raspberry Pi 2? ..19

1.2.4 Comparison of Arduino UNO and Raspberry Pi 2 Device ..19

1.2.5 XBee Device ...20

1.2.6 Bluetooth Device..21

1.2.7 Temperature Sensors ..23

1.2.8 HIH 6120 Humidity/Temperature Sensor ..26

2 Exploring Different Means of Communications for Home Automation Systems ... 28

2.1 Wired (Ethernet Cable) Home Automation System ...28

2.1.1 Advantages ..30

2.1.2 Disadvantages ..30

2.2 Wireless Home Automation Systems ...30

2.2.1 Wi-Fi Communication ..31

2.2.2 ZigBee Communication (XBee) ...33

2.3 Comparison between the Four Different Solutions ..34

3 Analysis and Design of Home Automation Systems ... 36

3.1 Analysis ..36

3.1.1 Requirements ..36

3.1.2 Use cases...37

3.1.3 Domain Model ...38

3.1.4 Fully Dressed Use Case Document (FDUCD) ...39

3.1.5 System Sequence Diagram (SSD) ..39

3.1 Design ...39

 5

3.1.1 Interaction Diagram ...39

3.1.2 Sequence Diagram ..40

3.1.3 Class Diagram ...40

3.1.4 Object Diagram ...40

3.2 Suitcase Design ..40

3.2.1 Advantages of using suitcase ..43

3.3 Equipment List ..43

4 Implementation and Results .. 44

4.1 Connection of Temperature Sensors..44

4.1.1 Connection of TMP36 Temperature Sensor with Arduino Board..44

4.1.2 Connection of Temperature Sensor Using Raspberry Pi 2 ...48

4.2 Logging ...55

4.2.1 Bluetooth Communication ...55

4.2.2 Raspberry Pi Wi-Fi Adapter ..58

5 Database .. 60

5.1 Database Model ...61

5.2 SQL ...62

6 Discussion and Suggestion .. 64

6.1 Monitoring System ..64

6.2 Logging System ..64

6.3 Control System ..64

6.4 Challenges ..64

6.4.1 Loss Human Capacity...64

6.4.2 Software Compatibility...65

6.4.3 Good Feasibility Study / Limitation on Purchase Channel of Components...........................65

7 Conclusion ... 66

Appendices ... 67

References .. 103

 6

Figure 1-1: Overview of the Home Automation system .. 2

Figure 1-1: Various appliances on Apple HomeKit [3] ... 10

Figure 1-2: Google Brillo Connectivity [5] .. 11

Figure 1-3: Appliance that can be controlled by Samsung Smart Home [6] 12

Figure 1-4: Arduino UNO Device ... 15

Figure 1-5: Screen shot of Arduino IDE ... 16

Figure 1-6: Raspberry Pi 2 Device .. 18

Figure 1-7: Pinout of Raspberry Pi 2 [10] ... 18

Figure 1-8: XBEE module mounted on Adapter board .. 21

Figure 1-9: USB Bluetooth dongle .. 21

Figure 1-10: Bluetooth Smart Shield mounted on Arduino Bluetooth Shield 22

Figure 1-11: HC-05 Bluetooth Module with pin assignment .. 22

Figure 1-12: TMP36 Temperature Sensor .. 24

Figure 1-13: Temperature – Resistance Relationship .. 25

Figure 1-14: HIH-6120 Temperature and Humidity .. 26

Figure 2-1: Wired Home Automation System using Ethernet Cables .. 28

Figure 2-2: Color Codes for the Twisted Pair Ethernet Cable [17] ... 29

Figure 2-3: Different Wireless Means of Communication between the Sensor Nodes (point 1 and

point 2) and the data Aggregator ... 31

Figure 3-1: Analysis Phase of the Home Automation software development [21]. 36

Figure 3-2: Use case diagram for Home Automation System ... 37

Figure 3-3: Domain Model for Home Automation Systems.. 39

Figure 3-4: Suitcase Design for Building Home Automation ... 41

Figure 3-5: Purchased Suitcase for building Home Automation System.. 42

 7

Figure 3-6: The Inside View of the Suitcase... 42

Figure 4-1: TMP36 Connection to Arduino Board .. 45

Figure 4-2: NTC Temperature Sensor Connection to Arduino Board .. 47

Figure 4-3: Screen shot of “WindowsIoTImageHelper”.. 50

Figure 4-4: Screen shot of Windows IoT Image Helper .. 51

Figure 4-5: Screen Shot of Device information on Screen display ... 52

Figure 4-6: Screen shot of Windows IoT Core Watcher .. 54

Figure 4-7: Screen shot of Windows PowerShell ... 55

Figure 4-8: Connection of HC-05 with Arduino UNO device .. 57

Figure 4-9: Screen shot Temperature Data Logged.. 59

Figure 5-1: Over view of the Database Storage System .. 61

Figure 5-2: Model of Database in ERwin ... 62

Figure 0-1: System Sequence Diagram (SSD) for 'Logging' Use Case Diagram 77

Figure 0-2: System Sequence Diagram (SSD) for 'Monitoring' Use Case Diagram 78

Figure 0-3: System Sequence Diagram (SSD) for 'Calculate' Use Case Diagram 79

Figure 0-4: System Sequence Diagram (SSD) for 'Configuration' Use Case Diagram 79

Figure 0-5: Sequence Diagram for 'Logging' Use Case ... 80

Figure 0-6: Sequence Diagram for 'Monitoring' Use Case .. 81

Figure 0-7: Sequence Diagram for 'Calculate' Use Case. .. 82

Figure 0-8: Sequence Diagram for 'Configuration' Use Case .. 83

Figure 0-9: Class Diagram for Home Automation System .. 84

Figure 0-10: Object Diagram for the Home Automation System.. 85

 8

1 Introduction
This project work focuses on automation of monitoring and Logging of sensor data to a local

memory location on a Next Unit of Computing (NUC) device and to a database in a remote

server via Wi-Fi connection. It combines the functionalities of an Arduino board and a Raspberry

Pi 2 for monitoring and logging data.

 In this project, we will be using an XBee, Wi-Fi and Bluetooth wireless module based on IEEE

802.15.4 , IEEE 802.11, and IEEE 802.15.1 networking protocol respectively in transmitting the

data from the Arduino and Raspberry development board mounted with sensor to a remote

server. The choice of the XBee and Bluetooth were made in order to benefit from their

functionality low energy use, low power consumption, support data rates up to 115200bps which

is pretty fast and it is relatively cheap. While Arduino UNO Wi-Fi shield will be used in order to

provide wireless communication between the sensors connected to the Raspberry Pi 2 and

Arduino and the remote server. The use of wireless communication will reduce greatly the use of

communication wires that can make communication system messy.

 It is observed from Figure 1-1 that the design of the smart home involves monitoring

temperature data by the sensors on Arduino and Raspberry development board before logging to

the remote computer/local database through Bluetooth LE, Wi-Fi and XBee.

1.1 Home Automation

Home Automation refers to the automatic and electronic control of household features, activity,

and appliances. It can also be seen as the use of one or more computers to control basic home

functions and features automatically and sometimes remotely [1]. This is made possible by

making use of the data logged to a remote server from the monitoring sensors.

1.1.1 Existing Home Automation

There are various Home Automation system in existence because the desire to achieve a smart

home is always on the rise as a result of technology advancement. The term "smart house" was

first coined by the American Association of Housebuilders in 1984 and the first “wired homes”

were built by hobbyist in the early 1960s [2].

 9

Different professional solutions to home automation have been proffered by many giant bodies

such as Samsung, Google and Apple HomeKit etc.

1.1.1.1 Apple HomeKit

HomeKit was meant to improve the experience and offer a secure method for managing

accessories to the users. It is an app available on Apple store. The Home app is a user interface

for controlling HomeKit-enabled products. It provides users with many monitoring and

controlling functionalities about home, zone and room. HomeKit is a framework for

communicating with and controlling connected accessories in a user’s home[3]. It uses Wi-Fi

and Bluetooth Low Energy (BLE), and can be integrated with Apple's phones, tablets and Apple

Watch. The user has a choice of adding devices that needs to be controlled. It is activated using

Siri
1
 option in the app’s menu. Within the app’s setting page, the home, zone and the room can

be given a unique name and the devices that need to be controlled are identified. And the

controlling of the added items can commence with series of commands by simply pressing a

button to give an order and see the order carried out immediately. This is done through wireless

communication. This functionality can also be extended to a longer distance, meaning distance

cannot be a barrier to what can be controlled. To control appliances from outside the room, home

or zone, the user will need an Apple TV (3
rd

 generation or later) that shares the same iCloud

account as their other iOS devices or using the Lutron app.

The Apple HomeKit is still undergoing development with good and improved upgrade still been

added. Some challenges of voice recognition by Siri is noticed if the specific HomeKit voice

command protocol laid down by Apple is not followed. However, simple commends as “turn off

my lights”, “turn on the heater” are recognized without problem. Figure 1-1[3] shows various

appliances that can be connected to the HomeKit.

1
 Siri: It is a computer program that works as an intelligent personal assistant and knowledge navigator.

 10

Figure 1-1: Various appliances on Apple HomeKit [3]

The functionalities are limited on iOS8 but iOS9 has an improved and better functionalities and

support for more compatible accessories.

1.1.1.2 Google Brillo

Brillo is an Operating System (OS) developed based on Android for low power Internet of

Things (IoT) devices. It is “lighter” in terms of storage and RAM (at least 128MB storage and 64

or 32MB RAM) required since it runs on low powered devices. This makes it possible to be used

in controlling home devices. The birth of Brillo is the result of the synergy between Google and

Nest. Brillo will be ran through a centralized console and will support Bluetooth Low Energy

(BLE) and Wi-Fi for connectivity [4]. Brillo uses Weave command language communication

protocol in talking with devices. Weave has cross-platform protocol functionality that enables

device setup from a mobile phone, communication between devices and devices to the cloud, and

user interaction from their mobile devices, the web or any other IOT OSes. Any device running

Brillo and Weave will communicate effectively with other Android devices, this gives Brillo a

very wide coverage and wider use.

Communication between the devices is not limited within the home or the range of coverage of

the Wi-Fi alone or Bluetooth LE, devices that run on Weave can communicate through the cloud

service from anywhere because devices that run on Weave protocol are automatically connected

to the cloud service.

Figure 1-2 [5] shows a typical connectivity network of Brillo app to different devices.

 11

Figure 1-2: Google Brillo Connectivity [5]

1.1.1.3 Samsung Smart Home

Samsung is the pioneer of Home Automation and its home automation solution has a very wide

coverage in terms of devices that can be connected. It connects any device at home irrespective

of its brands. Home appliances can be controlled when they are configured through the Samsung

smartphone app for Smart Home. Devices connect through a hub device to the smartphone app

and sensors are used to get the necessary information. The data obtained are then send to a cloud-

based Smart Home Server. Figure 1-3 [6] gives an overview of the Samsung smart home.

Samsung Smart Home is supported by SmartThings platform and it uses its Openness.

 12

Figure 1-3: Appliance that can be controlled by Samsung Smart Home [6]

1.1.2 Smart Home

A home that is completely automated is referred to as a Smart Home. A smart home, or smart

house, is a home that incorporates advanced automation systems to provide the inhabitants with

sophisticated monitoring and control over the building's functions [7]. For example a smart home

may control lighting, temperature, multi-media, security, window and door operations, as well as

many other functions. Smart homes use 'home automation' technologies to provide home owners

with 'intelligent' feedback and information by monitoring many aspects of a home. Many smart

 13

home technologies are available as a result of advancement in computer and technology

generally. This has created a challenge of compatibility of the various devices used, therefore

there is a drive to standardize home automation technologies.

In this project, we will be using some fundamental components such as computer(s) equipped

with the necessary software, Arduino board, Raspberry Pi, various devices to be controlled,

sensors (temperature, camera, humidity, photo detection, motion detection), high-speed internet

connection, interconnecting cables or wireless links and power source.

Home Automation involves the monitoring and controlling of various appliances such as

lighting, security locks on doors and gates, surveillance cameras, Heater, TV set etc. But in this

project, attention will majorly be on monitoring and logging of data from Temperature sensor

(NTC, TMP-36 and TC74A0), Humidity sensor (HIH6120).

1.1.3 Why Home Automation?

Regardless of the technology used, home automation provides numerous benefits and

importance. Outlined are some of the benefits:

1. It reduces Energy Consumption: Home automation saves energy on the use of utilities because

the issue of forgetting to switch off light or any appliances is eliminated with the use smart

appliances as the can be controlled from anywhere.

2. Security and safety: Smart Home provides the privilege of Lock and unlock doors from

anywhere, control and automate lights from any location, trigger an alarm to ring if there’s

unwanted motion or entry, and get immediate alerts if doors or windows open unexpectedly. This

can be achieved using the following; security camera, entry sensors, smoke detectors and

doors and gates locks.

3. Convenience: Home automation offers automatic assistance system for able and disabled

people who live alone at home as well as old people.

4. Comfort: Home Automation offers great deal of comfort as appliances can be controlled

from any location. The stress of going to the control switch is eliminated.

5. Emergency Aids to aged: Home automation can serve as a rescue/emergency aids to

aged people that are in danger and leave alone.

 14

The interesting thing about this project that differs from some of the existing home automation is

that it will be implemented on Windows 10 IoT Core which is installed on the Raspberry Pi with

various functionalities and features.

Home automation technology has developed so far that the only limit is your level of creativity

and imagination.

1.2 Hardware
In this project, the major hardware used are the Arduino and Raspberry Pi 2 development board,

and the various temperature sensors

1.2.1 Arduino UNO Device

There are several makes of Arduino device such as Arduino Nano, Arduino Mega, Arduino Mini

and Arduino YÙn etc. In this project, Arduino UNO will be used because it has all the

functionalities required for the project work.

Arduino UNO has an onboard microcontroller that is based on ATmega328P
2
 . Table 1 [8]

shows the technical properties of Arduino UNO device. Figure 1-4 shows an Arduino UNO

device.

Table 1: Technical Details of Arduino UNO

Feature Description

Microcontroller

Digital I/O Pins

Operating Voltage

Input Voltage (recommended)

Input Voltage (limit)

Digital I/O Pins

ATmega328P

14 (with 6 PWM outputs)

5V

7 – 12V

6 – 20V

14 (of which 6 provide PWM output)

2
 ATmega328P: A high performance, low power AVR 8-Bit microcontroller.

 15

PWM Digital I/O Pins

Flash Memory

Analog Input Pins

DC Current per I/O Pin

DC Current for 3.3V Pin

SRAM

EEPROM

Clock Speed

Length

Width

Weight

6

32 KB (ATmega328P)

of which 0.5 KB used by bootloader6

6

20mA

50mA

2 KB (ATmega328P)

1 KB (ATmega328P)

16 MHz

68.6 mm

53.4 mm

25 g

Figure 1-4 shows an Arduino UNO device drawn from fritzing with the different I/Os and

connection points.

Figure 1-4: Arduino UNO Device

The Arduino board can be powered by three basic ways:

Power supply

point

USB connection

point

 16

i. Through USB connected to a computer

ii. Using a voltage adapter that converter AC to DC voltage. A DC voltage of 7 – 12V is

recommended but it has a limit of 6 – 20V.

iii. It can be powered by a battery.

1.2.1.1 Arduino IDE

The IDE contains the menu bar, tool bar and the editor. The sketch is written in the editor,

verified and uploaded to the board. Figure 1-5 shows the Arduino IDE with the default sketch

structure.

Figure 1-5: Screen shot of Arduino IDE

1.2.2 Raspberry Pi 2 Device

This is the latest make of Raspberry device, it was released in February 2015. It has some added

functionalities that are not included in the first one Raspberry Pi 1 Model B+. It is around a

BCM2835 system-on-a-chip (SoC) ARMv7 processor running at 700MHz microprocessor,

hence it can run the full range of ARM GNU/Linux distributions, including Snappy Ubuntu

 17

Core, as well as Microsoft Windows 10 IoT Core[9]. In order to use Raspberry Pi 2

conveniently, it is very important that the various systematic and sequential steps in setting it up

should be followed carefully. The steps are provided at the implementation section. Its technical

details are provided in the Table 2.

Table 2: Technical Details of Raspberry Pi 2 Device

Features Description

CPU

RAM

USB ports

GPIO pins

HDMI port

Ethernet port

Audio jack and composite video

Camera interface (CSI)

Micro SD card slot

VideoCore IV 3D graphics core

A 900MHz quad-core ARM Cortex-A7

1GB

4

40

1

1

1 Combined 3.5mm

1

1

1

 18

Figure 1-6 shows a Raspberry Pi 2 device, picture taken from fritzing with the various

connection

points.

Figure 1-6: Raspberry Pi 2 Device

Figure 1-7 [10] shows the various GPIO pinout of Raspberry Pi 2

Figure 1-7: Pinout of Raspberry Pi 2 [10]

 19

1.2.3 Why both Arduino and Raspberry Pi 2?

Technically it might sound as a redundant system because the two devices are used to measure

the same quantities but the inclusion of the two is necessary because there are some features that

are present in one that are not available in the other. Such features are:

i. Arduino uses a microcontroller while Raspberry Pi uses an applications processor which is

system on a chip (SoC) makes it possible for it to run an application such as home

automation application if developed.

ii. The inclusion of Raspberry Pi makes it possible for the monitored data to be viewed on a screen

through the HDMI cable because that of Arduino UNO can be viewed through the serial

monitor.

1.2.4 Comparison of Arduino UNO and Raspberry Pi 2 Device

The two devices are very similarly technically and functionally but there exist some differences

between them that can influences one choice. Table 3 provides the comparison between Arduino

UNO and Raspberry Pi 2 devices.

Table 3: Comparison of Arduino UNO and Raspberry Pi 2 Devices

 Arduino UNO Raspberry Pi 2

Price

Size

Memory

Clock Speed

Onboard Network

Multitasking

Input Voltage

Flash

USB

Operating System

Integrated Development

Environment (IDE)

$30

7.6 x 1.9 x 6.5 cm

0.002MB

16MHz

None

No

7 – 12V

32KB

One, Input Only

None

Arduino

$35

8.6 x 5.4 x 1.7 cm

512MB

700MHz

10/100 wired Ethernet RJ45

Yes

5V

SD Card (2 to 16G)

Two, Peripherals Ok

Windows 10 IoT Core

Any compatible IDE e.g.

Geany, BlueJ, Visual Studio

 20

etc.

1.2.5 XBee Device

There are various communication modules through which the data monitored can be transferred

to the controller Arduino such as wireless, wired, infrared etc. In this project, XBee module is

used because of its low power consumption of 50mA @ 3.3V and its high range of reach of

300ft. XBee module is based on Zigbee communication protocol. Other details technical and

functional details of XBee can be found at [11]. Figure 1-8 shows an XBee mounted on adapter

board.

 21

Figure 1-8: XBEE module mounted on Adapter board

1.2.6 Bluetooth Device

The communication between the Raspberry Pi 2 at point 2 to the central device (Arduino device)

is through Bluetooth communication protocol. A USB Bluetooth dongle that transmit Bluetooth

signal is connected to the Raspberry device while the central device will be mounted with

Arduino Bluetooth shield. Figure 1-9 shows the USB Bluetooth dongle that was purchased to be

used with the Raspberry Pi 2 in this project while Figure 1-10 shows Bluetooth Smart Shield

mounted on Arduino Bluetooth Shield purchased.

Figure 1-9: USB Bluetooth dongle

 22

Figure 1-10: Bluetooth Smart Shield mounted on Arduino Bluetooth Shield

But due to challenge of limited available information about the two devices, we could not use

them effectively to achieve the intended purpose, however, order was made for a more efficient,

easy to use and cheap Bluetooth module (HC-05). Figure 1-11 shows a HC-05 with the pin

assignment. The pins are connected accordingly to the Arduino development board depending on

the mode that it is configured as (master or slave mode).

Figure 1-11: HC-05 Bluetooth Module with pin assignment

 23

The data obtained from both point 1 and point 2 are first logged to the SD card on the central

Arduino device (known as data aggregator) before logging to the local database on the NUC

computer through wireless communication protocol.

The Arduino and Raspberry Pi 2 are connected to XBee or Bluetooth LE module and Raspberry

USB Wi-Fi dongle respectively which help in transmitting data from the sensor to the remote

server in the control center. Each point also consist of various sensors needed for taking

measurements for onward transfer to the control center’s Raspberry Pi via wireless internet

service. All the readings are then logged to a remote data base through a secured and high speed

internet service which can be accessed and control through PDAs
3
 (IPad) from any location by

an authorized person.

1.2.7 Temperature Sensors

These are devices used in measuring the temperature of a medium. They can be categorized in to

contact and contactless sensors based on their proximity to the medium. Also, they can be

categorized based on the physical property (resistance, current, voltage, level of liquid) the

measured into thermometer, RTDs and thermocouple.

There different types of Temperature sensors based on the physical property the measured

(resistance or voltage) for measuring temperature. They are:

1. TMP36 temperature sensor.
2. NTC temperature sensor.
3. PT-100 temperature sensor.
4. Thermocouple

1.2.7.1 TMP36 Temperature Sensor

It is a low cost analog temperature sensor. It works on the principle that the voltage between the

Base and the emitter, VBE is linearly proportional to temperature in degree Celsius (℃). It is a

solid state component and easy to use.

It has three terminals as shown in Figure 1-12 namely:

i. Collector

ii. Emitter
iii. Base

3
 PDA: Personal Digital Assistance

 24

Figure 1-12: TMP36 Temperature Sensor

1.2.7.1.1 Features of TMP36

TMP36 has many functional features that make it suitable for temperature measurement.

i. It has a low operational voltage (2.7 V to 5.5 V)

ii. It is calibrated directly in °C.

iii. It has a 10 mV/°C scale factor

iv. It is ±2°C accurate over temperature

v. It has ±0.5°C linearity

vi. Stable with large capacitive loads

vii. It can measure temperature in the range of −40°C to +125°C

viii. It has less than 50 μA quiescent current

ix. Shutdown current 0.5 μA max

x. It is low self-heating

1.2.7.2 NTC Temperature Sensor

A Thermistor is a term coined out of thermal and resistor. Its works based on the principle that

its resistance varies with changes in temperature. Technically, all resistors values varies with

temperature but thermistors are designed in such a way that their resistance varies drastically

with changes in temperature[12]. NTC temperature sensor has 0 ℃ at 100 Ω[13]. Figure 1-13

 25

[14] shows the relationship between the resistance and the

temperature.

Figure 1-13: Temperature – Resistance Relationship

It is observed from Figure 1-13 that relationship has a negative gradient, which buttress the

negative proportionality of NTC temperature sensor’s resistance with temperature.

There two different types of thermistors:

i. PTC: Positive Temperature Coefficient. It has a positive temperature coefficient i.e. its resistance
value increases as the temperatures increases. They are majorly used as resettable fuses
because of their positive relationship with temperature. Hence, they are used for protecting
circuit.

ii. NTC: these are used for temperature measurement. It has a negative temperature coefficient i.e.
its resistance value decreases as the temperatures increases. It has a negative electrical
resistance variation with temperature as it is observed in Figure 1-13.

Since the objective of this project is to measure temperature, NTC is used. The nominal value of

the thermistor is normally 25 degrees Celsius, in this case we will use a 10K thermistor. It can

read temperatures between -40 and +125 degrees Celsius

1.2.7.2.1 Features of NTC Temperature Sensor

NTC has many benefits over other types of temperature sensor [12]. Among the features are:

 26

i. They are also much easier to waterproof since they just a resistor.

ii. They work at any voltage (digital sensors require 3 or 5V logic).

iii. Compared to a thermocouple, they don't require an amplifier to read the minute (very

small) voltages - you can use any microcontroller to read a thermistor.

iv. They can also be incredibly accurate for the price. For example, the 10K 1% thermistor in

the shop is good for measuring with ±0.25°C accuracy.

v. They are difficult to break or damage - they are much simpler and more reliable

1.2.8 HIH 6120 Humidity/Temperature Sensor

It is a cheap digital output-type relative humidity and temperature sensors combined together in

the same package. It has an accuracy of +/-4.0 %RH and a temperature accuracy level of +/-0.5

℃. It has I
2

C and SPI functionalities which make it possible to integrate with microprocessor.

Figure 1-14[15] shows HIH-6120 temperature and humidity sensor with the pinout.

Figure 1-14: HIH-6120 Temperature and Humidity

1.2.8.1 Specification of HIH-6120

The technical specification of HIH-6120 temperature and humidity sensor are:

i. It gives digital output

ii. It has resolution of 14 bit

iii. It has accuracy of +/-4.0 %RH and +/-0.5 ℃.

iv. Minimum operating temperature is -25 ℃.

v. Minimum operating supply voltage is 2.3V

vi. Maximum operating temperature is +85 ℃.

 27

vii. Maximum operating supply voltage 5.5V.

viii. Interface type I2C

ix. Package type SIP

 28

2 Exploring Different Means of Communications for
Home Automation Systems

There are different means of communications available for the implementation of Home

Automation systems, and in order to be able to choose a viable, robust and reliable one for the

implementation of this project, different solutions were analyzed and discussed as shown Figure

2-1.

2.1 Wired (Ethernet Cable) Home Automation System

Figure 2-1: Wired Home Automation System using Ethernet Cables

Figure 2-1 shows an overview for the wired means of communication for the Home Automation

system. In this topology, each sensor node (Arduino and Raspberry Pi) is connected to the data

aggregator (Arduino system) using Ethernet cables (10BASE-T/100BASE-TX). As shown in the

 29

figure, the Arduino device has an Ethernet shield that is mounted on it to enable Ethernet

connection between point 1 and point 3. The Raspberry Pi on the other hand has an inbuilt

ethernet port that enables ethernet communication. The communication protocol between the

nodes is based on Ethernet standard, IEEE 802.3 (10BASE-T, up to: 100BASE-TX). And each

device can communicate with each other with maximum distance of about 100 meters using

Category 5 (CAT5) cable supporting higher bit rate of about 100Mbps and longer link distances

[16].

The data transmission between the nodes is divided into shorter pieces called frames and each

frame contains the source and destination addresses with error checking to enables damage

frames to be detected, discarded and retransmitted. The Ethernet communication between the

nodes also provides services up to and including the data link layer as per the OSI model.

Twisted pair Ethernet cabling is used between the nodes for the purpose of electromagnetic

interference cancellation from external sources. The color code for the twisted pair Ethernet

cable for both ends is shown in Figure 2-2.

Figure 2-2: Color Codes for the Twisted Pair Ethernet Cable [17]

Figure 2-2 shows the color codes for the twisted cable that can be used for the communication

between the nodes in Figure 2-1. Both ends of the ethernet cable are crimped into RJ-45 pins

using 568A and 568B configuration respectively. The Wi-Fi shield on the data aggregator (point

 30

3) connects directly to the router through which the sensor data is logged to the remote data base,

DB over the internet.

2.1.1 Advantages

The advantage of this solution is that using ethernet cable as a connection medium between the

sensor nodes and the data aggregator node provides a reliable communication channel without

any fluctuations in the communication link. High data transmission rate can also be maintained

between the nodes.

2.1.2 Disadvantages

For long distance connection the cable resistance can offer a significant setback as the link tends

to attenuates. Cost of purchasing the cables is expensive. Furthermore, laying of cables is also

labor intensive and does not make the house neat.

Table 2-1: Specifications for the Wired Solution [16]

Cable Type Connector Type Maximum Speed

(Mbps)

Maximum

Distance

(meter)

Communication

Protocol

Ethernet Cable

(CAT-5)

RJ-45 100 100 Ethernet

2.2 Wireless Home Automation Systems

The wireless Home Automation systems that are discussed here are based on the Wi-Fi,

Bluetooth and ZigBee communications. Figure 2-3 shows the different wireless means of

communication between the sensor nodes (point 1 and point 2) and the data aggregator (point 3).

In this figure different means of communications between the sensor nodes and the data

aggregator are incorporated together and discussed separately.

 31

Figure 2-3: Different Wireless Means of Communication between the Sensor Nodes (point 1 and

point 2) and the data Aggregator

2.2.1 Wi-Fi Communication

Error! Reference source not found. shows the Wi-Fi solution for Home Automation system.

This solution provides Wi-Fi communication medium between the sensor nodes (Arduino and

Raspberry Pi) and the remote database, DB. Since the communication is Wi-Fi, there is no need

for the third device which is the data aggregator. Each sensor nodes is connected to the router

using Wi-Fi communication protocol through which the data is logged to remote database. The

Wi-Fi protocol is a medium range wireless communication system with a coverage area of about

100 meters. It operates in frequencies of 2.4GHz and 5GHz [18] which enhance the device to

transmit higher data rate of about 54Mbps and the communication protocol is based on IEEE

802.11 standard.

 32

The specifications for the solution are shown in Table 2-2.

Table 2-2: Specifications for the Wi-Fi Communication [18]

RF

Output

Power

(dbm)

Maximum

Coverage

(meter)

Operating

Frequency

(Hz)

Maximum

Speed

(Mbps)

Communic

ation

Protocol

Power

Consumpti

on (mA)

Supported

Security

Protocols

Wi-Fi

Shield

Dimensio

n (mm)

8dBm ±

1dBm

100 2.4 - 2.497

GHz

54 Wi-Fi

(IEEE

802.11b/g/

n)

TX: 135.0

RX: 125.0

WEP,

WPA/WPA2

–PSK

59 x 54

2.2.1.1 Advantages

The advantage of this means of communication is that it is flexible, easier to add new device(s)

and less labor intensive.

2.2.1.2 Disadvantages

The main disadvantage of this means of communication is interference and bandwidth issues. If

the house is full of Wi-Fi connected gadgets then the Wi-Fi device will competes with the other

devices for bandwidth and will be slower to respond. The interference on the other hand causes

fluctuations of signal and affects the quality of the link. Another drawback to this solution is that

the Wi-Fi shield consumes a lot of power.

2.2.1.3 Bluetooth Communication

Figure 2-3 also shows the Bluetooth means of communication for the Home Automation system.

The communication between the sensor nodes and the data aggregator is based on Bluetooth

communication protocol. This enables the user to access the sensor data from any of the node via

Bluetooth once within the coverage area without the need to connect through the internet.

However, the logging of the data to remote database is based on the Wi-Fi communication

 33

protocol between the router and the data aggregator. The data aggregator receives the sensor data

(Temperature values) via Bluetooth and logged the value to the remote database using Wi-Fi.

This solution has a communication distance in house up to 10 meters without obstacle with a

frequency range of 2.4G. In this solution up to 8 cell nodes can be connected to each other. The

specifications for the communication are given in Table 2-3.

Table 2-3: Specifications for the Bluetooth Solution [19]

TX

Power

 (dBm)

RX

sensitivity

(dBm)

Coverage

Distance

(meter)

Operating

Frequency

(Hz)

Communication

Protocol/

Interface

Antena

(dBi)

Baudrate: Bluetooth Shield

Dimension

(mm)

[-27 to

+3]

-90 10 2.4 GHz Bluetooth V2.0 2 9600/9200

/38400 etc

57.4x45.3x19.4

2.2.1.4 Advantages

The chief advantage here is that the user can use a smart phone/Tablet to access sensor data

using both Bluetooth and Wi-Fi communication. The solution is suitable for low power

consumption project(s) and low data rate.

2.2.1.5 Disadvantages

The main disadvantages of this solution are the limitation in distance and power consumption.

2.2.2 ZigBee Communication (XBee)

Figure 2-3 shows the network topology for XBee. The communication between the sensor nodes

and the data aggregator is based on Zigbee protocol using XBee communication device. This

protocol is designed to communicate under Personal Area Network with data rate of about

250kbps. The data aggregator received the sensor values from the sensor nodes via ZigBee

communication protocol and logged the value to the remote database using Wi-Fi. The

communication is based on mesh topology with each device communicating with each other and

through each other to the destination and can support up to 65000 cells nodes [20].

 34

This solution is robust and provides a stable network due to the mesh communication method

implemented by the protocol. If any of the neighboring nodes is faulty, the faulty or damaged

neighboring nodes will create a reverting loop, preventing any information or data to be sent to

it. This is known as self-healing. There are three different types of nodes can be configured using

ZigBee: the ZigBee Coordinator, ZigBee Router, and ZigBee Endpoint. The ZigBee router

transmits the data to the coordinator where the data is transmitted to the data aggregator, then to

the local database and remote database using Wi-Fi.

2.2.2.1 Advantages

The means of communication is more efficient and consumes less energy when compare to

Bluetooth. It is also self-healing network and supports multiple nodes.

2.2.2.2 Disadvantages

It cannot be utilized for a network that requires higher data rate.

2.3 Comparison between the Four Different Solutions
Based on the analysis of the various means of communication, Table 2-4 shows the summary of

the comparison among the different solutions discussed.

Table 2-4: Comparison between Wired, Wi-Fi, Bluetooth and Xbee Home Automation Solution

Wired

(Ethernet)

Wi-Fi

(Wi-Fi Shield)

Bluetooth

(Bluetooth Shield)

ZIGBEE (XBee)

 High data

rate(100Mbps

)

 Required high

power

consumption

 Can connect

to the

internet using

Ethernet cable

connected to

 High data rate

(54Mbps)

 Required high

power

consumption

 Used to connect

directly to the

internet

 Suitable for

sensor networks

due to high data

 Very low data

rate(1Mbps)

 Required very low

power

consumption

 Cannot connect to

the internet

directly

 Due to low data

rate, it is not

suitable for sensor

 Low data

rate

(250kbps)

 Required low

power

consumption

 Cannot

connect to

the internet

directly

 Suitable for

 35

the router

 Suitable for

sensor

networks due

to high data

rate.

 Uses star

topology

network

rate.

 Uses star

topology

network

networks but

good for

controlling

devices (like

switching ON and

OFF light from

phone)

 Uses point to

point master-slave

network.

sensor

networks

 Uses mesh

topology.

Each device

communicate

s with each

other and

through each

other to the

destination

device.

Based on the analysis of the various means of communication of Home Automation systems

discussed above, Bluetooth and XBee wireless communication solutions will be integrated and

used for the Home Automation under design.

 36

3 Analysis and Design of Home Automation
Systems

3.1 Analysis

This section uses the concepts of Object-Oriented Analysis (OOA) to analyze the software under

design. The overview of the phase is shown in Figure 3-1 [21].

Figure 3-1: Analysis Phase of the Home Automation software development [21].

3.1.1 Requirements

Collection of requirements and specifications were carried out using FURPS+ as shown in Table

3-1.

Table 3-1: List of requirement using FURPS+

F: Functional  The Home Automation system should get the sensor

configuration and type; monitor the temperature and display

the values on the screen

 It should be able to log the temperature value to the SQL

server

 Using IIS Web service to monitor the temperature from the

SQL database and SD Card

U: Usability  Display

 SQL database

 SD card

R: Reliability  Running system all the time and logging temperature value data

 37

anytime.

 Temperature range -30℃ – 100℃.

P: Performance  Sampling and logging temperature values every 1 seconds

 Low pass filter or average filter for filtering out noise from

sensor data to improve accuracy

S: Supportability Windows 10 IOT

Design limitation -

3.1.2 Use cases

The use case defines what the system shall do and treat the system as a black box [22]. It defines

the functions of the system and each use case represents a function. It also describes how the

system is going to work. It shows the interaction between the actors and the system in order to

achieve the objective or goal. The components that are external to the system but have some

roles that relates to the system are known as the actors.

The use case diagram for the Home Automation system is shown in Figure 3-2 and is explained

as follows.

Figure 3-2: Use case diagram for Home Automation System

 38

 Configuration: It is responsible for obtaining the number of sensors, sensor Id, and

setting up pins as input and output pins.

 Monitoring: It is responsible for reading sensor values based on sampling time,

implementing low pass filter to get rides of unwanted signal(s) from the sensor value.

 Calculate Value: This perform signal conditioning and display the temperature value on

screen.

 Logging: Responsible for getting temperature values from ‘CalculateValue’ and log the

data to SQL database and SD Card.

3.1.3 Domain Model

The domain model shows the conceptual classes that is based on static information and gives a

good view of the inheritances between classes. It is a conceptual model of the domain that

incorporates both behavior and data[23].

 39

Figure 3-3: Domain Model for Home Automation Systems

It gives an overview of the static information. The domain model for the Home Automation

system is shown in Figure 3-3

3.1.4 Fully Dressed Use Case Document (FDUCD)

The fully dressed use case document is a text that describes a more detailed structure for a use

case [24]. It shows how software shall accomplish the specific functions. The FDUCD for the

use cases are presented in Appendix 3.

3.1.5 System Sequence Diagram (SSD)

The system sequences deals with modeling the behavior of the use case. It focuses on what the

system is doing and not how is doing it. Events between the actors and the system are one of the

main functions of the SSD [22].

The system sequence diagram for the use cases are drawn with reference to the information

documented in the main success scenario of the FDUCD. The SSDs for the system are shown in

Appendix 4.

3.1 Design

Design is a process of preparing solutions to the problems and requirements, and make model of

the design using UML diagrams. It defines the software objects and how these objects are

collaborating to satisfy the requirements. It involves making a conceptual solution by defining

the objects and assign responsibilities to these objects [25]. The design phase consists of

interaction diagrams, class diagrams and object diagrams.

3.1.1 Interaction Diagram

The interaction diagram consists of the sequence diagrams and the collaboration diagrams. The

sequence diagram is dynamic system which is time dependent. It shows the sequence of

messages in time. The collaboration diagram shows collaboration with focus on data. The system

under design is time dependent hence; our focus will be on sequence diagrams (SD).

 40

3.1.2 Sequence Diagram

The sequence diagram for the system under design is shown in Appendix 5.

3.1.3 Class Diagram

A class diagram is a static model containing class name, attributes and messages for a class and

consists of one or several classes [25]. The class diagram for the system is provided in Appendix

6.

3.1.4 Object Diagram

An object diagram represents an instance of a class which is derived from class diagrams. It is

dependent on the class diagrams. The object diagram for this system is shown in Appendix 7.

3.2 Suitcase Design
The project is planned to be built into a suitcase. The design and the selection of the suitcase is

based on the equipment that are be built into it and these include

 One Raspberry Pi with TC74 temperature sensor and MCP3002 analog to digital

converter (Raspberry Pi size: 9.4 x 6.2 cm)

 Two Arduinos with TMP36/NTC temperature sensors (Arduino size: 12 x 9.3 cm)

 Arduino Bluetooth shields for wireless communication between devices

 Two Xbee devices for wireless communication between devices

 Mini Computer of size 11.7 x 3.9 cm

 Monitor (Screen) of size: 17.8 x 17.8

Based on the selected equipment and their corresponding sizes the suitcase was designed and

purchased. Figure 3-4 shows the suitcase design for the project.

 41

Figure 3-4: Suitcase Design for Building Home Automation

Based on this design, the suitcase in Figure 3-5 was purchased. The inside view of the suitcase is

shown in Figure 3-6.

 42

Figure 3-5: Purchased Suitcase for building Home Automation System

Figure 3-6: The Inside View of the Suitcase

 43

3.2.1 Advantages of using suitcase

The main advantages of building Home Automation system into a suitcase are

 Ease of presentation

 Portability.

 It makes testing and maintenance of the whole system easy.

 Protection for the various components and devices.

3.3 Equipment List

The list of equipment and budget recommended for purchase for the system under design is

attached with this report. This list includes different sensors, Arduino and Raspberry Pi, etc. with

their prices and where to purchase them.

 44

4 Implementation and Results
The coding based on software analysis and design is shown in Appendix 9 as master and slave

codes respectively.

The circuits for measuring temperature using the different sensors are implemented in this

chapter. The implementation starts with proper wiring of the sensors on the breadboard after

looking up the datasheet to identify the terminals. This is followed by connecting the right signal

to the Arduino board. The output of the measurement can then be read using the serial monitor in

the Arduino IDE.

4.1 Connection of Temperature Sensors

The temperature sensors are hooked to either Arduino board or a Raspberry Pi 2 via the project

board. The Arduino and Raspberry Pi 2 board provide the necessary signal for efficient operation

of the respective sensors.

4.1.1 Connection of TMP36 Temperature Sensor with Arduino Board

For accurate and efficient temperature measurement, it is necessary that the sensor is wired

correctly and supplied with the proper signal. Figure 4-1 shows the connection of TMP36 to

Arduino board drawn in fritzing. The collector terminal is connected to 5V power supply, the

emitter terminal is connected to ground and the base terminal is connected to analog A0 pin on

the Arduino board.

 45

Figure 4-1: TMP36 Connection to Arduino Board

4.1.1.1 Sketch for TMP36 Temperature Reading

The sketch used in measuring the temperature is written in the editor of the Arduino IDE,

verified by clicking the verify icon, and uploaded to the microcontroller by clicking the

upload button, using Arduino bootloader. Proper COM port should be selected using the tool

menu dropdown and select the appropriate port. The code is provided below:

/* This code is for TMP 36 temperature sensor to read temperature

 * both in degreeC

 */

const int temperaturePin = A0;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

}

void loop() {

 // Declaration of variables voltage, degreeC

 float voltage, degreesC;

 float getVoltage(int pin);

 voltage = getVoltage(temperaturePin);

 degreesC = (voltage - 0.5) * 100.0; //converting from 10 mv per degree with 500 mV offset

 //to degrees ((voltage - 500mV) times 100)

 46

4.1.1.2 Conversion of Voltage to Temperature

TMP36 does not measure temperature directly; hence the voltage value it measures is converted

to temperature in ℃ by the following lines in the sketch:

 degreesC = (voltage - 0.5) * 100.0; //converting from 10 mv per degree with 500 mV offset

 //to degrees ((voltage - 500mV) times 100)

Offset of 500mV is used in order to create allowance for measuring negative temperature.

Before the conversion, the voltage value from the pin is scaled by finding the equivalent to the

bit. The bit ranges from 0 – 1023 and the voltage range is 0 – 5V.

This was implemented in the sketch in the getVoltage() class that was implemented in a new tab.

The sketch used is provided below:

float getVoltage(int pin)

{

 return (analogRead(pin) * 0.004882814);

 // This equation converts the 0 to 1023 value that analogRead()

 // returns, into a 0.0 to 5.0 value that is the true voltage

 // being read at that pin.

}

4.1.1.3 Connection of NTC Temperature Sensor with Arduino Board

The connection of the NTC temperature sensor to the Arduino board is easy and straight forward.

Start by connecting one end of the 10K resistor to 5V, connect the other end of the 10K 1%

resistor to one pin of the thermistor and the other pin of the thermistor to ground. Then connect

Analog A0 pin to the junction of the resistor and NTC sensor of the two. This form a voltage

divider. The connection is shown in Figure 4-2 drawn using fritzing.

 47

Figure 4-2: NTC Temperature Sensor Connection to Arduino Board

4.1.1.4 Determination of Temperature by NTC Temperature Sensors

The resistance value of NTC temperature sensor will need to be converted [26] to

temperature. There are basically two ways of temperature determination when using

NTC temperature sensor:

i. Steinhart-Hart Equation method.

ii. Beta Factor equation method.

Steinhart-Hart equation method is used in determining the temperature values in this project. The

Steinhart-Hart equation is provided in equation (1).

(1)

Where:

This is implemented in the sketch by the getTemp() class. The sketch is provided as:

double getTemp()

{

 // Inputs ADC Value from Thermistor and outputs Temperature in Celsius

 int RawADC = analogRead(temperaturePin);

 long Resistance;

 48

 double Temp;

 // Assuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC)

 Resistance = ((10240000 / RawADC) - 10000);

 // Utilizes the Steinhart-Hart Thermistor Equation:

 // Temperature in Kelvin = 1 / {A + B[ln(R)] + C[ln(R)]^3}

 // where A = 0.001129148, B = 0.000234125 and C = 8.76741E-08

 Temp = log(Resistance);

 Temp = 1 / (0.001129148 + (0.000234125 * Temp) + (0.0000000876741 * Temp * Temp * Temp));

 Temp = Temp - 273.15; // Convert Kelvin to Celsius

 return Temp; // Return the Temperature

}

4.1.1.5 Sketch for Reading Temperature by NTC Sensor

The sketch used in measuring the temperature is written in the editor of the Arduino IDE,

verified by clicking the verify icon, and uploaded to the microcontroller by clicking the

upload button, using Arduino bootloader. Proper COM port should be selected using the tool

menu dropdown and select the appropriate port. The code is provided below:

// Read Temperature Values from NTC Temperature Sensor

const int temperaturePin = 1;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 float temperature;

 temperature = getTemp();

 Serial.print("Temperature Value: ");

 Serial.print(temperature);

 Serial.println("*C");

 delay(1000);

}

4.1.2 Connection of Temperature Sensor Using Raspberry Pi 2

In order to use the Raspberry Pi 2 development board effectively and efficiently, it is very

necessary that the various steps in setting it up are strictly adhered to.

4.1.2.1 Setting up Raspberry Pi 2

The following steps [10] should be followed in setting up the PC and Raspberry Pi 2:

4.1.2.1.1 Setting up the PC

In setting up the PC, the following steps are observed:

Step 1: Log on to https://dev.windows.com/en-us/iot and click get started.

https://dev.windows.com/en-us/iot

 49

Step 2: Select your device. In this case Raspberry Pi 2

Step 3: Setting Up PC: Download and install Windows 10 setup or upgrade the PC to Windows

10 then install Visual studio 2015 if you don’t have them on your system.

To setup your Windows 10 IoT Core development PC, you first need to install the following:

i. Make sure you are running the public release of Windows 10 (version 10.0.10240) or

better: If you are already running Windows 10, you can find your current build

number by clicking the start button, typing “winver”, and hitting enter.

ii. Install Visual Studio 2015

a. Visual Studio Community Edition is recommended but Visual Studio

Professional 2015 and Visual Studio Enterprise 2015 will work as well.

b. If you have to install Visual Studio, make sure to do a Custom install and

select the checkbox Universal Windows App Development Tools ->

Tools and Windows SDK.

c. If you already have Visual Studio, you will be prompted to download the

needed tools when attempting to run our solution in the next part of the

tutorial.

iii. Install Windows IoT Core Project Templates. Alternatively, the templates can be

found by searching for Windows IoT Core Project Templates in the Visual Studio

Gallery or directly from Visual Studio in the Extension and Updates dialog (Tools >

Extensions and Updates > Online).

iv. Enable developer mode on your Windows 10 device. The relevant portion of the linked

instructions is the “Windows 10 Desktops/tablets” section, as you should be

attempting setup with one of these devices.

v. Open Visual Studio 2015 and create a Universal Windows Platform (UWP) App by

selecting ‘File > New > Project > Visual C# > Windows > Universal > Blank App

(Universal Windows)’. This is required to ensure that the framework dependencies

are available for our samples to build.

4.1.2.1.2 Setting up the Device

Before proceeding with the device setup, the following items are needed to be in place:

1. A PC running Windows 10 - as prepared in the previous step.

2. Raspberry Pi 2
3. 5V Micro USB power supply - with at least 1.0A current. If you plan on using several

power-hungry USB peripherals, use a higher current power supply instead (>2.0A).

4. 8GB micro SD card - class 10 or better.

5. HDMI cable and monitor

 50

6. Ethernet cable
7. Micro SD card reader that is compatible with Raspberry Pi 2

Step 1: Install the Windows 10 IoT Core Tool

i. Download a Windows 10 IoT Core image. Save the ISO to a local folder.
ii. Double click on the ISO (IoT Core RPi.iso). It will automatically mount itself as a virtual drive so

you can access the contents.
iii. Install Windows_10_IoT_Core_RPi2.msi. When installation is complete, flash.ffu will be

located at C:\Program Files (x86)\Microsoft IoT\FFU\RaspberryPi2.
iv. Eject the Virtual CD when installation is complete - this can be done by navigating to the top

folder of File Explorer, right clicking on the virtual drive, and selecting “Eject”.

Step 2: Put the Windows 10 IoT Core image on your SD card

i. Insert a micro SD card into your SD card reader.

ii. Use IoTCoreImageHelper.exe to flash the SD card. Search for “WindowsIoT” from

start menu and select the shortcut “WindowsIoTImageHelper”. Figure 4-3 shows the

screen shot of “WindowsIoTImageHelper”.

Figure 4-3: Screen shot of “WindowsIoTImageHelper”

 51

iii. The tool will enumerate devices as shown. Select the SD card you want to flash, and

then provide the path to the ffu to flash the image. Figure 4-4 shows the screen shot of

the interface for Windows IoT Image Helper.

Figure 4-4: Screen shot of Windows IoT Image Helper

iv. Safely remove your USB SD card reader by clicking on “Safely Remove Hardware” in

your task tray, or by finding the USB device in File Explorer, right clicking, and

choosing “Eject”. Failing to do this can cause corruption of the image.

Step 3: Hook up the Raspberry Pi 2 Development Board

 All the various connection points are shown in Figure 1-6

 52

i. Insert the micro SD card you prepared into your Raspberry Pi 2.

ii. Connect a network cable from your local network to the Ethernet port on the board.

Make sure your development PC is on the same network.

iii. Connect an HDMI monitor to the HDMI port on the board.

iv. Connect the power supply to the micro USB port on the board.

Step 4: Boot Windows 10 IoT Core

i. Windows 10 IoT Core will boot automatically after connecting the power supply. This process
will take a few minutes. After seeing the Windows logo, your screen may go black for about
a minute - don’t worry, this is normal for boot up. You may also see a screen prompting you
to choose a language for your Windows 10 IoT Core device - either connect a mouse and
choose your option, or wait about a 1-2 minutes for the screen to disappear.

ii. Once the device has booted, the DefaultApp will launch and display the IP address of your RPi2.

Figure 4-5: Screen Shot of Device information on Screen display

In order to connect a running device, we use PowerShell. The steps in configuring PowerShell

are enumerated in the preceding section.

4.1.2.1.3 Using PowerShell to connect and configure a device running Windows 10 IoT Core

 53

In order to run the device on Windows 10 IoT core, it will be first configured as a remote

Administration.

4.1.2.1.3.1 Remote Administration and Configuration

PowerShell is a task-based command-line shell and scripting language, designed especially for

system administration. It can be remotely configured and manage by any Windows 10 IoT Core

device using Windows PowerShell.

4.1.2.1.3.2 Initiating a PowerShell (PS) Session

To start a PS session with your Windows 10 IoT Core device, you’ll first need to create a trust

relationship between your host PC and your device. After booting your Windows IoT Core

device, an IP address will be shown on the screen attached to the device as in Figure 4-5 or

alternatively the same information can be obtained from Windows 10 IoT Core Watcher utility

that pops up on booting the device as shown in Figure 4-6.

 54

Figure 4-6: Screen shot of Windows IoT Core Watcher

i. Launch an administrator PS console on your local PC by searching for it at search the web and

windows.

 55

Figure 4-7: Screen shot of Windows PowerShell

4.2 Logging

Logging of temperature and humidity data obtained from the sensors through Arduino device

and Raspberry Pi 2 is done in two locations. Locally on a NUC computer and externally on a

remote server database through internet. The data can be accessed by an authorized person from

any location for control purpose. Three communication means; Bluetooth, Wi-Fi and Xbee

communications are used in transmitting the temperature data to the different storage location.

4.2.1 Bluetooth Communication

Bluetooth communication is a wireless means of communication that can be employed in

transmitting voice and data at high speeds using radio wave. It operates at a frequency of 2.45

GHz frequency band and a typical data transfer rate of about 2 megabits per second (Mbps)[27].

It employs a master-slave protocol, with one master and one or more devices as slaves. The

master device uses link manager software to identify other Bluetooth devices to create links with

 56

them to be able to send and receive data [27]. It has a range of approximately 10 meters

perimeter. Bluetooth uses a spread-spectrum frequency hopping technology which makes it

possible for multiple devices to connect at different frequencies without interference.

4.2.1.1 Why Bluetooth Communication

The choice of using Bluetooth communication was necessitated by the enormous advantages it

has over other means of wireless communication in short distance transmission.

i. It uses less power for transmission

ii. Its transmission speed is reasonably high

iii. It can connect up to 7 devices

iv. It does not require a direct line of sight for communication

v. It does not require synchronization

4.2.1.2 HC-05 Bluetooth Module

HC-05 Bluetooth module is an easy to use and cheap device. It can be used to setup a wireless

serial Bluetooth connection between a host device and a slave device or vice versa; as a master it

can initiate a connection and as a slave, it can only accept connections. It is a serial port

Bluetooth module that is fully qualified Bluetooth V2.0+EDR (Enhanced Data Rate) 3 Mbps

Modulation with complete 2.4GHz radio transceiver and baseband[28]. Its connection with

Arduino UNO device drawn in fritzing is shown in Figure 4-8.

 57

Figure 4-8: Connection of HC-05 with Arduino UNO device

It is observed that the TX and RX pins of HC-05 Bluetooth module are connected to digital pin

10 and 11 on the Arduino UNO device respectively. HC-05 Bluetooth module has several

software and hardware specifications[28] that made it very useful for this project.

4.2.1.3 Hardware Specifications of HC-05 Bluetooth Module

The Hardware specifications obtained from the datasheet are:

i. Low power from 1.8V to 3.6V, 1.8V Operation

ii. Parallel Input Output (PIO) control

iii. UART interface with programmable baud rate

iv. Integrated antenna

v. Edge connector

vi. +4dBm RF transmit power

vii. -80dBm sensitivity

4.2.1.4 Software Specifications of HC-05 Bluetooth Module

The software specifications obtained from the datasheet are:

i. Default baud rate: 38400, Data bits: 8, Stop bit: 1, Parity: No parity, Data control: has.

ii. Supported baud rate: 9600, 19200, 38400, 57600, 115200, 230400, and 460800.

iii. Given a rising pulse in PIO0, device will be disconnected.

iv. Auto-pairing PINCODE: “0000” as default.

 58

v. Permit pairing device to connect as default.

vi. Auto-reconnect in 30 min when disconnected as a result of beyond the range of connection.

4.2.1.5 Setting Up HC-05 Bluetooth Module

HC-05 Bluetooth module can be setup either as host (master) or slave device. The AT default

commands used in setting HC-05 mode as a server (master) are outlined below:

1. Connect PIO11 to high level

2. Power on, module in to command state.

3. Using baud rate 38400, sent the “AT+ROLE = 1\r\n” to module, with “OK\r\n” means setting

successes.

4. Connect PIO11 to low level, repower the module, the module work as server (master).

4.2.1.6 Pairing HC-05 with PC

Before pairing the HC-05 with the PC, we need to first establish a link between the Arduino and

the Bluetooth module. This can be achieved by the following steps:

i. Search for Bluetooth icon on the computer, right click and select add a device.

ii. Search for new device and add HC-05.

iii. Entering the default pairing code of “1234”. If it was not changed during the Bluetooth module

setup.

iv. Sketches can now be uploaded to send and receive data from the computer.

For the HC-05 to communicate with the PC, a terminal emulator software such as tera term,

Realterm etc. needs to be installed on the PC. In this project, tera term terminal emulator

software is used. Search for the Bluetooth signal on the PC and pair with it by entering the same

passcode and connecting with the right port. Tera term is opened on the PC and the passcode,

baud rate, and the port number is selected. The PC is now paired with the Arduino board, hence

the temperature data measured can now be received on the PC.

4.2.2 Raspberry Pi Wi-Fi Adapter

The temperature data measured by the Raspberry Pi 2 is logged to the SD Card and transmit

through Wi-Fi to the remote server. The code used in achieving was done in C# and it is located

in Appendix 8 in the Appendix section.

 59

The data logged can be accessed through the internet using the FTP
4
 protocol and adding the IP

address assigned to the Raspberry device.

(ftp://169.254.207.240/Users/DefaultAccount/AppData/Local/Packages/5042dda0-4ee4-40df-

a5e6-c7bad7dd9009_yzekw4x8qxe1g/LocalState/). Figure 4-9 shows the csv file of temperature

data logged obtained from the browser.

Figure 4-9: Screen shot Temperature Data Logged

4
 FTP: is a standard network protocol used to transfer computer files from one host to another host over a TCP-based

network, such as the Internet

ftp://169.254.207.240/Users/DefaultAccount/AppData/Local/Packages/5042dda0-4ee4-40df-a5e6-c7bad7dd9009_yzekw4x8qxe1g/LocalState/
ftp://169.254.207.240/Users/DefaultAccount/AppData/Local/Packages/5042dda0-4ee4-40df-a5e6-c7bad7dd9009_yzekw4x8qxe1g/LocalState/

 60

5 Database
The implementation of Home Automation involves the read of different sensor measurement

(monitoring) and the write to number of actuators for control purpose. These various sensor

measurements needs to be structured and organized in such a way that access to the data,

management of information and update of measurement can easily be carried out, hence, the

need for a database.

A database is an organized structured collection of data or information for easy management,

accessibility and update.

In this project, the database is designed using SQL server and it is structured in to different tables

which are 2-dimensional with rows and columns that are inter related. The column has different

attributes and the row has specific information. The logging of data in to the database in this

project is carried out at 2 different stages:

1. Local on a NUC computer

2. Server based database.

Each of the devices (Arduino and Raspberry Pi) used for monitoring the sensors are connected to

a NUC computer where the data are logged locally. The information are then transmitted to the

server based Database through XBee communication from the Arduino device and Raspberry

USB through the Wi-Fi dongle communication which help in transmitting data from the sensor

to the remote server in the control center. Figure 5-1 shows the overview of the database system

with the various interconnection of logging process in to the local database and the server based

database.

 61

Figure 5-1: Over view of the Database Storage System

5.1 Database Model

The model of the database was achieved using CA Erwin Data Modeler (ERwin). Erwin is a

software tool used basically for data modeling. Erwin’s data modeling engine is based upon

IDEF1X
5
. The choice of Erwin was necessitated by the fact that the Community Edition that is

used in this project is free and support up to 25 tables which is within the requirement of the

project. However, it can be increased to accommodate more than 25 tables on further expansion

of the project. This will requires a different version of Erwin like standard Edition, Navigator

Edition or Workgroup Edition which will attract some license fee. Figure 5-2[29] shows the

model of the database using the Erwin Community Edition modeler.

5
 IDEF1X: Integration DEFinition for Information Modeling. It is a data modeling language for development of

semantic data models.

 62

Figure 5-2: Model of Database in ERwin

It is observed from Figure 5-2 that the database has five main tables; USER, DEVICE, ALARM,

TAG and ALARM_CONFIGURATION.

 USER: It has UserId as its Primary key and the data type is integer. It has seven attributes

out of which UserLevelId is a Foreign key.

 DEVICE: It has DeviceId as its Primary key and the data type is integer. It has six

attributes out of which DeviceTypeId is a Foreign key.

 TAG: It has TagId as its Primary key and the data type is integer. It has seven attributes

out of which TagTypeId, TagGroupId and DeviceId are a Foreign keys.

 ALARM_CONFIGURATION: It has AlarmConfigurationId as its Primary key and the

data type is integer. It has five attributes out of which TagId, PriorityId are Foreign key.

 ALARM: It has AlarmId as its Primary key and the data type is integer. It has seven

attributes out of which DataId is a Foreign key.

5.2 SQL

The original database (DMM) was designed using in MySQL by the previous student (Kishan

Prajapati) but it has been so far converted to SQL
6
. This was obtained using the functionality of

the Erwin modeler to generate the code which was executed in the SQL IDE to create the

6
 SQL: Structured Query Language

 63

different tables in the database. The code used in generating the database is provided in

Appendix 8.

 64

6 Discussion and Suggestion
Discussion of success story, challenges and suggestion to further work as observed during the

implementation of each task are categorized below:

6.1 Monitoring System
In the project only temperature and humidity were measured, in subsequent task more quantities

like wind speed, Atmospheric pressure etc. can be measured. Also, all the sensors used according

to the task description were wired, attempt can be made in using wireless sensors in future work.

6.2 Logging System
Temperature and humidity values were measured and logged to locally on SD Card and can be

monitored over the internet. Due to time constraint and some challenges experienced logging to

NUC could not be realized. This could be implemented in future work. NUC computer will give

the best solution for the local data storage because it has a larger storage capacity, many

peripherals can be connected to it and input device such as keyboard can be used with it.

6.3 Control System
In this project, the major focus was on data monitoring and logging. Future work can be

extended to control.

6.4 Challenges
Several challenges were experienced during the course of the project. They challenges are

categorized into different subunits as enumerated:

6.4.1 Loss Human Capacity

Originally, the project work was allocated to 4 students but along the line one student drop for

reason best known to him. The task was divided among the three remaining students but 20 days

to the hand-in of the project, another student dropped the course leaving behind 2 students. This

project report is based on the part undertaken by the two remaining students in the group, time

 65

could not allow us to undertake the work left by the departing student. We will suggest that

before student are allowed to join another group, there should be an opposite movement of

student to the group he/she is leaving in order to compensate for the loss of capacity.

6.4.2 Software Compatibility

Compatibility of the various sensors with Windows 10 IoT were major problems because of

Windows 10 being in its development stage most of the sensors components were not compatible

with it.

6.4.3 Good Feasibility Study / Limitation on Purchase Channel
of Components

The features and specifications of the components need to be checked against the communication

protocols before procurement of the devices and sensors purchased. This was due to non-

availability of the intended components and sensors in the Norwegian shops that the school has

memorandum of understanding with and also due to challenge of compatibility issue with

Windows 10 mentioned in 6.4.2.

 66

7 Conclusion
The objective of the project task of Analyze, design and development of a prototype that can be

built into a suitcase was not fully implemented as some task that were allocated to the student

that left the group could not be undertaken due to the limited time, challenge on using the

purchased components and limited information about Windows 10 IoT. However, the Analysis

and design were fully implemented and the development of a prototype was 60% completed.

 67

Appendices

The list of appendices are outlined below:

1. Appendix 1: Abstract

2. Appendix 2: Project Task Description

3. Appendix 3: Fully Dressed Use case Document (FDUCD)

4. Appendix 4: Use Case

5. Appendix 5: Sequence Diagram

6. Appendix 6: Domain Diagram

7. Appendix 7: Class Diagram

8. Appendix 8: Codes

9. Appendix 9: Coding for Analysis and Design of the Home Automation System

 68

Appendix 1: Abstract

 69

Telemark University College
Faculty of Technology

M.Sc. Programme

PROJECT REPORT, SCE4006

Students: Egbunu Achema (142773), Idachaba Emmanuel (142938)

Thesis title: Home Automation with Windows 10 IOT

Signatures: …………………………………….

Number of pages: 102

Keywords: .

Supervisor: Hans-Petter Halvorsen sign.: .

2
nd

 Supervisor: Nils-Olav Skeie sign.: .

Censor: <name> sign.: .

External partner: <name> sign.: .

Availability: <Open/Secret>

Archive approval (supervisor signature): sign.: . Date :

 70

Abstract:

Telemark University College accepts no responsibility for results and conclusions presented in this report.

Telemark University College accepts no responsibility for results and conclusions presented in this report.

The home automation has becomes so vital due to the comfort and flexibility it gives the user for using

home devices. The design and implementation of this project is based on using Arduino and

Raspberry Pi for reading temperature values, local and remote data logging, alarm system and the

overall system management over internet.

These devices have been distributed in each room interfacing with the sensors and collecting the

sensor data. The sensor data collected is wirelessly transferred to data aggregator system (Aggregator:

Arduino) using XBee and Bluetooth.

The data aggregator is directly connected to Wi-Fi (Router) where the sensor data is logged to the

local database (SD Card) and remote database. The user can access these data from anywhere using

smart phones, iPad or computer.

The overall management of the Home Automation system is carried out either remotely or locally

using Tablet or Mini PC respectively. For the remote management, the user can monitor the data

logged to the data over the internet using Tablet or any other devices.

Hence, this project focus on developing a reliable, effective and robust system using Arduino and

Raspberry Pi that will enables the user to monitor temperature data logged to the local database and

remote database from anywhere.

 71

Appendix 2: Project task description

Telemark University College
Faculty of Technology

SCE4006 Project

Title: Home Automation Platform using Windows 10 IoT

TUC supervisor: Hans-Petter Halvorsen, Nils-Olav Skeie

External partner: National Instruments

Task description:

Home automation (also known as Smart House, Smart Home, etc.) solutions has greatly

increased in popularity over the past several years. Home Automation may include centralized

control of lighting, heating, ventilation and air conditioning, appliances, security locks of gates

and doors and other systems, to provide improved convenience, comfort, energy efficiency and

security.

Keywords: Industrial IT, Raspberry Pi, Arduino, IoT, Windows 10 IoT, Wireless Data

Some of the following topics should be selected and investigated in this project:

 Study of existing Home Automation Systems and explore the Arduino and the Raspberry Pi
platforms to see how they can be integrated and used for Home Automation.

 Explore functionality using Raspberry Pi with Windows 10 IoT.

 Logging, Monitoring and Control of typical Data in Homes, e.g., Temperature, etc.

 A Web based logging service similar to e.g., Xively or Temboo should be developed.

 Further development of a platform for monitoring and presentation of data.

 Use of RFID for Access Control

 Camera surveillance with Raspberry Pi

 Explore Wireless Communication, such as Wi-Fi, Bluetooth SMART, XBee, RFID together with
Raspberry Pi and Arduino. RFID should be used for Access Control (e.g. open doors). XBee

should be used for Wireless Sensor Communication.

 Using Arduino/Raspberry Pi for Monitoring and Data logging using Web Services and
“Data Dashboard for LabVIEW” (App for Smartphones and Tablets).

 Development of PID control and other Control strategies like MPC for temperature control in

houses.

 Using OPC UA together with Raspberry Pi

 Weather Data Monitoring and Prediction for Temperature Control

 72

 Using Arduino within LabVIEW; LabVIEW LINX

 Explore possibilities for using LabVIEW within Raspberry Pi 2

 Security issues within Home Automation solutions

 Analyze, design and development of a prototype that can be built into a suitcase.

Based on the student’s interest, they should select some of the topics above in collaboration with

the supervisor for further investigation.

Task background:

Home Automation Systems have been very popular today and many vendors have solutions

within this area. This must also be seen in connection with Internet of Things (IoT).

Student category: SCE students

Practical arrangements: None

Signatures:

Supervisor (date and signature):

Students (date and signature):

Arduino is a low cost open-source electronics prototyping platform. The
Arduino has analog and digital I/O.

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a
computer monitor or TV, and may be used with a standard keyboard and
mouse.

 73

Appendix 3: Fully Dressed Use Case Documents

(FDUCD)

Table 0-1: Fully Dressed Use Case Document of Home Automation System for ’Logging’ use

case

Use case name Logging

Scope The system under design

Level User goal

Primary actor SQL databse, SD Card

Stakeholders -

Precondition -

Success garantee -

Main success scanario 1. Get logging time

2. Get temperature values from ‘Calculate’

3. Get humidity value from ’Calculate’

4. Log the data to SD Card

5. Log the data to SQL database

6. Wait for next sampling time

7. GOTO 2.

Extensions 2a. Warning if connection error and re-try 5times and stop

3a. Warning if connection error and re-try 5times and stop

Frequency of occurance While the system is operational

 74

Miscellaneous
-

Table 0-2: Fully Dressed Use Case Document of Home Automation System for ’Monitoring’ use

case

Use case name Monitoring

Scope The system under design

Level User goal

Primary actor Display, NTC Sensor, TMP 36 Sensor, Timer, SQL database, SD

Card

Stakeholders -

Precondition -

Success garantee -

Main success scanario
1. Get sensor type

2. Get sampling time

3. Read TC74 sensor value

4. Read NTC sensor value

5. Read Humidity sensor

6. Filter sensors value

7. Wait for next sampling time

8. GOTO 2.

Extensions 3a. Warning if connection error and re-try 5times and stop

4a. Warning if connection error and re-try 5times and stop

 75

Frequency of occurance While the system is operational

Miscellaneous
-

Table 0-3: Fully Dressed Use Case Document of Home Automation System for ’Calculate’ use

case

Use case name Calculate

Scope The system under design

Level User goal

Primary actor Display

Stakeholders -

Precondition -

Success garantee -

Main success scanario
1. Get sensors value from ‘Monitoring’

2. Scale sensors value to corresponding temperature

value in degrees

3. Display the sensors values

4. Wait for next sampling time

5. GOTO 1.

Extensions -

Frequency of occurance While the system is operational

Miscellaneous
-

 76

Table 0-4: Fully Dressed Use Case Document of Home Automation System for ’Configuration’

use case

Use case name Configuration

Scope The system under design

Level User goal

Primary actor Keyboard

Stakeholders -

Precondition -

Success garantee -

Main success scanario
1. Get sensors number

 2. Get sensors Id

3. Get sensors type

 4. Setup sensors

Extensions -

Frequency of occurance Only once while the system is operational

Miscellaneous
-

 77

Appendix 4: System Sequence Diagram (SSD)

Figure 0-1: System Sequence Diagram (SSD) for 'Logging' Use Case Diagram

 78

Figure 0-2: System Sequence Diagram (SSD) for 'Monitoring' Use Case Diagram

 79

Figure 0-3: System Sequence Diagram (SSD) for 'Calculate' Use Case Diagram

Figure 0-4: System Sequence Diagram (SSD) for 'Configuration' Use Case Diagram

 80

Appendix 5: Sequence Diagrams (SD)

Figure 0-5: Sequence Diagram for 'Logging' Use Case

 81

Figure 0-6: Sequence Diagram for 'Monitoring' Use Case

 82

Figure 0-7: Sequence Diagram for 'Calculate' Use Case.

 83

Figure 0-8: Sequence Diagram for 'Configuration' Use Case

 84

Appendix 6: Class Diagram

Figure 0-9: Class Diagram for Home Automation System

 85

Appendix 7: Object Diagram

Figure 0-10: Object Diagram for the Home Automation System

 86

Appendix 8: SQL Codes

Code for generating Database in SQL server

CREATE TABLE [ALARM]

(

 [AlarmId] integer NOT NULL ,

 [DataId] integer NULL ,

 [AlarmTime] datetime NULL ,

 [AckPerson] varchar(20) NULL ,

 [AckTime] datetime NULL ,

 [Description] varchar(200) NULL ,

 [Status] varchar(20) NULL

)

go

ALTER TABLE [ALARM]

 ADD CONSTRAINT [XPKALARM] PRIMARY KEY CLUSTERED ([AlarmId] ASC)

go

CREATE TABLE [ALARM_CONFIGURATION]

(

 [AlarmConfigurationId] integer identity (1,1) NOT NULL ,

 [TagId] integer NULL ,

 [PriorityId] integer NULL ,

 [UpperLimit] varchar(20) NULL ,

 [LowerLimit] varchar(20) NULL ,

 [Status] varchar(20) NULL

)

go

ALTER TABLE [ALARM_CONFIGURATION]

 ADD CONSTRAINT [XPKALARM_CONFIGURATION] PRIMARY KEY CLUSTERED

([AlarmConfigurationId] ASC)

go

CREATE TABLE [ALARM_PRIORITY]

(

 [PriorityId] integer identity (1,1) NOT NULL ,

 [Name] varchar(20) NULL ,

 [Descrition] varchar(20) NULL

)

go

ALTER TABLE [ALARM_PRIORITY]

 ADD CONSTRAINT [XPKALARM_PRIORITY] PRIMARY KEY CLUSTERED ([PriorityId] ASC)

go

CREATE TABLE [DEVICE]

(

 [DeviceId] integer identity (1,1) NOT NULL ,

 [DeviceTypeId] integer NULL ,

 [DeviceName] varchar(20) NULL ,

 [PrimaryDevice] varchar(20) NULL ,

 [UniqueKey] varchar(20) NULL ,

 [Description] varchar(200) NULL ,

 87

 [Status] varchar(20) NULL

)

go

ALTER TABLE [DEVICE]

 ADD CONSTRAINT [XPKDEVICE] PRIMARY KEY CLUSTERED ([DeviceId] ASC)

go

CREATE TABLE [DEVICE_TYPE]

(

 [DeviceTypeId] integer identity (1,1) NOT NULL ,

 [DeviceTypeName] varchar(20) NULL ,

 [Category] varchar(20) NULL ,

 [PrimaryDevice] varchar(20) NULL ,

 [UniqueKey] integer NULL ,

 [Description] varchar(200) NULL

)

go

ALTER TABLE [DEVICE_TYPE]

 ADD CONSTRAINT [XPKDEVICE_TYPE] PRIMARY KEY CLUSTERED ([DeviceTypeId] ASC)

go

CREATE TABLE [TAG]

(

 [TagId] integer identity (1,1) NOT NULL ,

 [TagTypeId] integer NULL ,

 [TagGroupId] integer NULL ,

 [DeviceId] integer NULL ,

 [TagName] varchar(20) NULL ,

 [LoggingTime] datetime NULL ,

 [Status] varchar(20) NULL ,

 [Description] varchar(200) NULL

)

go

ALTER TABLE [TAG]

 ADD CONSTRAINT [XPKTAG] PRIMARY KEY CLUSTERED ([TagId] ASC)

go

CREATE TABLE [TAG_GROUP]

(

 [TagGroupId] integer identity (1,1) NOT NULL ,

 [TagGroupName] varchar(20) NULL ,

 [Description] varchar(200) NULL

)

go

ALTER TABLE [TAG_GROUP]

 ADD CONSTRAINT [XPKTAG_GROUP] PRIMARY KEY CLUSTERED ([TagGroupId] ASC)

go

CREATE TABLE [TAG_TYPE]

(

 [TagTypeId] integer identity (1,1) NOT NULL ,

 [Description] varchar(200) NULL ,

 [Unit] varchar(20) NULL ,

 [TagType] varchar(20) NULL

)

 88

go

ALTER TABLE [TAG_TYPE]

 ADD CONSTRAINT [XPKTAG_TYPE] PRIMARY KEY CLUSTERED ([TagTypeId] ASC)

go

CREATE TABLE [TAGDATA]

(

 [DataId] integer identity (1,1) NOT NULL ,

 [TagId] integer NULL ,

 [TagValue] varchar(20) NULL ,

 [Date] datetime NULL ,

 [Status] varchar(20) NULL ,

 [AlarmStatus] varchar(20) NULL

)

go

ALTER TABLE [TAGDATA]

 ADD CONSTRAINT [XPKTAGDATA] PRIMARY KEY CLUSTERED ([DataId] ASC)

go

CREATE TABLE [USER]

(

 [UserLevelId] integer identity (1,1) NOT NULL ,

 [Name] varchar(20) NULL ,

 [UserName] varchar(20) NULL ,

 [Password] char(18) NULL ,

 [Email] varchar(20) NULL ,

 [Description] varchar(200) NULL ,

 [MainAdmin] varchar(20) NULL ,

 [UserId] integer NOT NULL

)

go

ALTER TABLE [USER]

 ADD CONSTRAINT [XPKUSER] PRIMARY KEY CLUSTERED ([UserId] ASC)

go

CREATE TABLE [USER_LEVEL]

(

 [UserLevelId] integer identity (1,1) NOT NULL ,

 [UserLevel] varchar(20) NULL ,

 [Description] varchar(200) NULL

)

go

ALTER TABLE [USER_LEVEL]

 ADD CONSTRAINT [XPKUSER_LEVEL] PRIMARY KEY CLUSTERED ([UserLevelId] ASC)

go

ALTER TABLE [ALARM]

 ADD CONSTRAINT [R_1] FOREIGN KEY ([DataId]) REFERENCES [TAGDATA]([DataId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [ALARM_CONFIGURATION]

 89

 ADD CONSTRAINT [R_2] FOREIGN KEY ([PriorityId]) REFERENCES [ALARM_PRIORITY]([PriorityId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [ALARM_CONFIGURATION]

 ADD CONSTRAINT [R_3] FOREIGN KEY ([TagId]) REFERENCES [TAG]([TagId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [DEVICE]

 ADD CONSTRAINT [R_4] FOREIGN KEY ([DeviceTypeId]) REFERENCES

[DEVICE_TYPE]([DeviceTypeId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [TAG]

 ADD CONSTRAINT [R_5] FOREIGN KEY ([TagTypeId]) REFERENCES [TAG_TYPE]([TagTypeId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [TAG]

 ADD CONSTRAINT [R_6] FOREIGN KEY ([DeviceId]) REFERENCES [DEVICE]([DeviceId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [TAG]

 ADD CONSTRAINT [R_7] FOREIGN KEY ([TagGroupId]) REFERENCES [TAG_GROUP]([TagGroupId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [TAGDATA]

 ADD CONSTRAINT [R_11] FOREIGN KEY ([TagId]) REFERENCES [TAG]([TagId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

ALTER TABLE [USER]

 ADD CONSTRAINT [R_8] FOREIGN KEY ([UserLevelId]) REFERENCES [USER_LEVEL]([UserLevelId])

 ON DELETE NO ACTION

 ON UPDATE NO ACTION

go

 90

Appendix 9: Coding based on Analysis and Software

Design

Code for the Aggregator Node (Arduino Bluetooth_ Master)

/*

The Arduino is configured as Aggregator (master) receiving temperature values

from the Arduino sensor node (Slave).

*/

#include <SoftwareSerial.h> // Software Serial Port

#define Rx 6

#define Tx 7

#define DEBUG_ENABLED 1

String retSymb = "+RTINQ="; // start when any return is observed

String slaveName = ";BLUBTSlave"; // Name of the Arduino sensor node (Slave name)

int Indexname = 0; //nameIndex = 0;

int addrIndex = 0;

String recvBuf;

String slaveAddr;

 91

String connCmd = "\r\n+CONN=";

SoftwareSerial blueToothSerial(Rx,Tx);

void setup()

{

 Serial.begin(9600);

 pinMode(Rx, INPUT);

 pinMode(Tx, OUTPUT);

 Bluetoothconfiguration();

 /*wait 1000ms to flush the serial buffer*/

 delay(1000);

 Serial.flush();

 blueToothSerial.flush();

}

/* Checking if there is any Bluetooth serial available */

void loop()

{

 char recvChar;

 while(1)

 {

 92

 if(blueToothSerial.available()) //check if there's any data sent from the remote

bluetooth shield

 {

 recvChar = blueToothSerial.read();

 Serial.print(recvChar);

 }

 if(Serial.available()) //check if there's any data sent from the local serial terminal,

you can add the other applications here

 {

 recvChar = Serial.read();

 blueToothSerial.print(recvChar);

 }

 }

 delay(2000);

}

void Bluetoothconfiguration() //setupBlueToothConnection()

{

 Serial.println("t"); //Newly Added

 blueToothSerial.begin(38400); // Bluetooth BaudRate

 blueToothSerial.print("\r\n+STWMOD=1\r\n"); // setting Bluetooth to work in

master mode

 blueToothSerial.print("\r\n+STNA=BLUBTMaster\r\n"); // setting Bluetooth name as

"BLUBTMaster"

 blueToothSerial.print("\r\n+STAUTO=0\r\n"); // Forbiden Auto Connection

 93

 delay(2000); // delay for 2seconds.

 blueToothSerial.flush();

 blueToothSerial.print("\r\n+INQ=1\r\n"); //make the master inquirable

 Serial.println("Master is inquirable!");

 delay(2000);

 /* Locating the target sensor node (slave) */

 char recvChar;

 while(1)

 {

 if(blueToothSerial.available())

 {

 recvChar = blueToothSerial.read();

 recvBuf += recvChar;

 Indexname = recvBuf.indexOf(slaveName); //get the position of slave name

 //Indexname -= 1;

 if (Indexname != -1)

 {

 Serial.print(recvBuf);

 /* geting the start position of sensor node (Arduino slave) address */

 addrIndex = (recvBuf.indexOf(retSymb,(Indexname - retSymb.length()- 18)) +

retSymb.length());

 94

 /* geting the string of slave address */

 slaveAddr = recvBuf.substring(addrIndex, Indexname);

 break;

 }

 }

 }

 /* The connection command */

 connCmd += slaveAddr;

 connCmd += "\r\n";

 int connectionOK = 0;

 Serial.print("Connecting to slave:");

 Serial.print(slaveAddr);

 Serial.println(slaveName);

 //connect the sensor node (slave) till they are connected

 do

 {

 blueToothSerial.print(connCmd);//send connection command

 recvBuf = "";

 while(1)

 {

 if(blueToothSerial.available()){

 recvChar = blueToothSerial.read();

 95

 recvBuf += recvChar;

 if(recvBuf.indexOf("CONNECT:OK") != -1)

 {

 connectionOK = 1;

 Serial.println("Connected!");

 blueToothSerial.print("Connected!");

 break;

 }

 else if(recvBuf.indexOf("CONNECT:FAIL") != -1)

 {

 Serial.println("Connect again!");

 break;

 }

 }

 }

 }while(0 == connectionOK);

}

 96

Code for Sensor Node Arduino (Slave)

/*

Temperature Measurement using Arduino Sensor Node (Slave) and transmit values via

Bluetooth shield

to Agregator Node for Logging

*/

/* using Software Serial Port */

#include <SoftwareSerial.h>

#define RxD 6 //9

#define TxD 7 //8

#define DEBUG_ENABLED 1

#define NTC_PIN_TEMP A1

SoftwareSerial blueToothSerial(RxD,TxD);

void setup()

{

 Serial.begin(9600);

 pinMode(RxD, INPUT);

 pinMode(TxD, OUTPUT);

 97

 configuration();

}

/* Reading NTC sensor values */

int getSensVal()

{

 int a = analogRead(NTC_PIN_TEMP);

 return (a);

 }

/* Implementing filter */

int filterSenVal()

{

 double FilterOutput;

 double Tf = 0.00005;

 double Ts = 1;

 double Filt;

 double y_init = 0; //Initial filter output

 double a = Ts/(Tf+Ts);

 double u_k; //Sensor output signal

 u_k = getSensVal();

 Filt = (1-a)*y_init + a*u_k; //y_k is the output filter

 98

 y_init = FilterOutput;

 return ((int)Filt); //Return filter output

}

/* Calibrating or Scaling of NTC sensor values to corresponding temperature */

int CalibSensVal() //getTemp()

{

 /* Getting the analog filtered sensor output */

 int a = filterSenVal(); //analogRead(NTC_PIN_TEMP);

 //int B=3975; //Constant value for used for conversion

 /* Converting the anlaog filtered sensor output to corresponding resistance value

 Using Steinhart-Hart Thermistor Equation:

 Where A = 0.001129148; B = 0.000234125; C = 0.0000000876741;

 */

 float resistance = (float)(1023-a)*10000/a;

 float LogRes = log(resistance);

 /* Converting rsistance value to the corresponding temperature value in degrees */

 float Temperature = 1 / (0.001129148 + (0.000234125 * LogRes) + (0.0000000876741 *

LogRes * LogRes * LogRes));

 /* Converting temperture in Kelvin to Celsius */

 99

 float temp = Temperature - 273.15;

 /* Alternative equation here can also be used where B=3975:

 float temp = temp=1/(log(resistance/10000)/B+1/298.15)-273.15;

 */

 return (int)temp;

}

void loop()

{

 Serial.print("NTC Temperature Value[Degree C]: ");

 //Serial.println(CalibSensVal() /*getSensVal()*/ /* filterSenVal()*/);

 char recvChar;

 while(1)

 {

 if(blueToothSerial.available())

 {//check if there's any data sent from the remote bluetooth shield

 recvChar = blueToothSerial.read();

 Serial.print(recvChar);

 if(recvChar == 't' || recvChar == 'T')

 {

 100

 blueToothSerial.print("NTC Temperature Value[Degree C]: ");

 blueToothSerial.println(CalibSensVal());

 Serial.print(CalibSensVal());

 blueToothSerial.print("\n");

 }

 }

 if(Serial.available())

 {//check if there's any data sent from the local serial terminal, you can add the other

applications here

 recvChar = Serial.read();

 blueToothSerial.print(recvChar);

 }

 }

 delay(2000);

}

void configuration()

{

 blueToothSerial.begin(38400); // Bluetooth BaudRate

 blueToothSerial.print("\r\n+STWMOD=0\r\n"); // setting Bluetooth to work in slave

mode

 blueToothSerial.print("\r\n+STNA=BLUBTSlave\r\n"); // setting Bluetooth name as

"BLUBTSlave"

 blueToothSerial.print("\r\n+STOAUT=1\r\n"); // Allowing Paired device(s) to connect

to this Bluetooth

 101

 blueToothSerial.print("\r\n+STAUTO=0\r\n"); // Forbiden Auto Connection

 delay(2000); // delay for 2seconds.

 blueToothSerial.print("\r\n+INQ=1\r\n"); // make the slave bluetooth inquirable

 Serial.println("The slave bluetooth is inquirable!");

 delay(2000); // delay

 blueToothSerial.flush();

 }

 102

Code for Monitoring Temperature using Raspberry Pi

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Windows.Storage;
using System.IO;

namespace temp_TC74
{
 class LogData
 {
 string _filename = "logTempData.csv";
 StorageFile file;
 Stream _write;
 int nLineCount = 0;
 public string Filepath { get; private set; }
 public LogData(string filename = null)
 {
 if (filename != null)
 _filename = filename;
 InitFile();
 }
 async void InitFile()
 {
 // create a file with the given filename in the local folder; replace any
existing file with the same name
 file = await
Windows.Storage.ApplicationData.Current.LocalFolder.CreateFileAsync(_filename,
CreationCollisionOption.ReplaceExisting);
 Filepath = Windows.Storage.ApplicationData.Current.LocalFolder.Path;
 _write = await file.OpenStreamForWriteAsync();
 }
 public void WriteData(double fTempTC74)
 {
 nLineCount++;

 string content = fTempTC74.ToString("0.0") + "*C ," +
DateTime.Now.ToString()+ "%\r\n";//fTempTC74.ToString("0.0") + "C ," +
fTempHIH6100.ToString("0.0") + "C ," + fHumidityHIH6100.ToString("0.0") + "%\r\n";
 // saves the string 'content' to a file 'filename' in the app's local storage
folder
 byte[] fileBytes = System.Text.Encoding.UTF8.GetBytes(content.ToCharArray());

 // write the char array created from the content string into the file
 _write.Write(fileBytes, 0, fileBytes.Length);
 _write.Flush();

 }

 }

}

 103

References
[1] M. Rouse, "Home Automation," 2010.
[2] R. Harper, Inside the Smart Home, 2003.
[3] A. Inc. (2015). HomeKit. Available: https://developer.apple.com/homekit/
[4] A. Grush. (2015). Project Brillo is Google’s new Internet of Things OS. Available:

http://www.androidauthority.com/project-brillo-google-io-612159/
[5] M. Elgan. (2015). How Google and Apple will smartify your home. Available:

http://www.computerworld.com/article/2925959/internet-of-things/how-google-and-apple-
will-smartify-your-home.html

[6] W. India. (2015). Will These 3 Biggies Change The Future of Smart Homes? Available:
http://gosmartbricks.com/the-future-of-smart-homes/

[7] S. H. Energy. (2015). What is a Smart Home. Available: http://smarthomeenergy.co.uk/what-
smart-home

[8] Arduino. (2015). Arduino. Available: https://www.arduino.cc/Hacking
[9] Raspberry, "Raspberry Pi 2 Model B," 2015.
[10] Microsoft. (2015). Windows Dev Center. Available: http://ms-iot.github.io/content/en-US/win10
[11] D. I. Inc, "XBEE RF Module," 2009.
[12] Adafruit. (2015). NTC Temperature Sensor. Available:

https://learn.adafruit.com/thermistor/overview
[13] EPCOS. (2015). NTC Datasheet-NTC thermistors for temperature measurement. Available:

www.farnell.com/datasheets/1598315.pdf
[14] vishay. (2012). Resistive Products-NTC Thermistors. Available: www.vishay.com
[15] RS-Online. (2015). Temperature and Humidity sensor. Available: http://no.rs-

online.com/web/p/temperature-humidity-sensors/7811365/
[16] Wikipedia. (2015, November 4). Ethernet. Available: https://en.wikipedia.org/wiki/Ethernet
[17] Google. (2015, November 4). Twisted pair cable color code. Available:

https://www.google.no/search?q=twisted+pair+cable+color+code&rlz=1C1CHJW_enNO660NO6
60&espv=2&biw=1366&bih=623&tbm=isch&imgil=Kv3Pu7rk63W11M%253A%253B9zRbgJh8RX
hwsM%253Bhttp%25253A%25252F%25252Fwww.incentre.net%25252Ftech-
support%25252Fother-support%25252Fethernet-cable-color-coding-
diagram%25252F&source=iu&pf=m&fir=Kv3Pu7rk63W11M%253A%252C9zRbgJh8RXhwsM%25
2C_&dpr=1&usg=__d-kSBK1JZ9nD4GouPwP0qLrOjS8%3D&ved=0CC0QyjdqFQoTCJ-
E1aPJgckCFcOQLAodWm4Onw&ei=BKQ_Vp_yHMOhsgHa3Ln4CQ#tbm=isch&q=twisted+pair+ca
ble+color+code&imgrc=gxOo5pRf1jNomM%3A

[18] Study.Com. (2003, October 8, 2015). Medium-Range Wireless Communication: Wi-Fi & Hotspots.
Available: http://study.com/academy/lesson/medium-range-wireless-communication-wi-fi-
hotspots.html

[19] Geeetech. (2013, November 11). Arduino Bluetooth shield. Available:
http://www.geeetech.com/wiki/index.php/Arduino_Bluetooth_shield

[20] EngineersGarage. (2012, November 11). Difference between Bluetooth and Zigbee Technologies.
Available: http://www.engineersgarage.com/contribution/zigbee-vs-bluetooth

[21] N.-O. Skeie, Object-Oriented Analysis, Design, and Programming using UML and C#, 2014.
[22] N.-O. Skeie, 'SCE1306: Object-oriented analysis, design, and programming', Lecture notes for the

master course SCE1306 at the Telemark University College (TUC). 2015.
[23] Wikipedia. (2015, November 17). Domain model. Available:

https://en.wikipedia.org/wiki/Domain_model

 104

[24] Wikipedia. (2010, November 16). Use case. Available:
http://en.wikipedia.org/wiki/Usecase#Actors.

[25] N.-O. Skeie, Object Oriented Analysis Design and Programming, 2014.
[26] Asus. (2013). Keyboard Device Filter. Available:

http://rog.asus.com/forum/showthread.php?31509-Is-the-ASUS-Keyboard-Device-Filter-
Needed

[27] P. Zandbergen. (2003 - 2015). Short-Range Wireless Communication: Bluetooth, ZigBee &
Infrared Transmission. Available: http://study.com/academy/lesson/short-range-wireless-
communication-bluetooth-zigbee-infrared-transmission.html

[28] I. Studio. (2010). HC-05 Bluetooth Module.
[29] K. Prajapati, Process Control and Monitoring using Arduino and Raspberry, 2015.

